加入书架

设置背景

上一页

返回目录

下一页

第248章 《周易的数学原理》(3/6)

作品:《从小镇做题家到首席科学家

(1,1),(1,0),(0,1),(0,0)}

如此,我们可以得到一个‘四象’的集合。

作的三重笛卡儿积:

=**={(1,1,1)(1,1,0)(1,0,1)(0,1,1)(1,0,0)(0,1,0)(0,0,1)(0,0,0)}

就会得到一个‘八卦’集合。

接着如果我们再作的6重笛卡尔积,就可以得到易卦集。

这里的过程较为简单且单一,建议读者自信证明。”

周易留了一道作业,毕竟要做这个方向的鼻祖,不留作业怎么行呢?

让这群玄学带师体验一下数学系学生的痛苦。

证明题的痛苦。

周易喝了一口水,润了润喉咙,继续说道:

“如果从“四象”的集合出发,作的三重笛卡尔积,同样我们也能得到一个易卦集。

=**。

同样,我们还可以从‘八卦’的集合出发,作与的笛卡尔积,也能得到一个易卦集,

这里由于时间有限,且步骤较为简单,留作一个习题。

紧接着,我们进行进一步分析,易卦集还可以看做另外一些形式的笛卡尔积。

但是时间有限,且过程较为简单,留作一个习题给广大的易学爱好者。”

每一个章节,周易把《周易》或者其余古书之中的例子拿出来当成例题或者习题,

给这群易学爱好者,到时候这群人做不出来,还不得乖乖求自己。

又懂易学又懂数学的人,有多少呢?

就算这些人做出来了之后,还能有自己的权威?

都得来求自己。

周易都已经算好了,到时候整个玄学界大多数都得来求自己。

写完了第二章周易与集合论的关系,周易开始了写第三章,

周易与布尔代数的关系。

每一大章之前,周易都要先写涉及到的数学知识与《周易》易学的关系,

不然是无法吸引这群孜孜不倦研究玄学的人的。

“布尔代数最初是在对逻辑思维法则的研究中出现的。

英国哲学家布尔.ool,1815~1864利用数学方法研究了集合与集合之间的关系的法则,他的研究工作后来发展成为一门独立的数学分支。

随着电子技术的发展,布尔代数在自动化技术和电子计算机技术中得到了广泛的应用,

布尔向量是由0和1两个数码按一定顺序排列的数组,它被广泛地采用为描述具有若干因素,而每种因素都有两种对立状态的事物的数学模型。

我们将看到,易卦集的每一个卦都是一个布尔向量,而易卦集本身则是一个布尔代数。

因此,在本章中我要介绍有关布尔向量与布尔代数的初步知识,

介绍布尔向量与布尔代数与易学的关系,在介绍这两个概念之前,先介绍运算的概念。”

这一章,内容也不少,三个小节,周易再次留下了大量的习题。

不留下习题侮辱他们的智商,周易这口恶气是无法出的。

只有留下习题才能让他们知道什么是差距,周易灵光一闪,是不是有种更好的方法让他们求自己呢?

但是一时间想不出来,便开始了后面的内筒。

紧接着,周易开始了第四章的撰写。

周易与群论的关系。

首先还是写的群论与《周易》的联系。

“群是现代数学中一个极为重要的概念,它是19世纪法国青年数学家伽罗华alois在研究5次以上代数方程的解法时,于1832年引进的。


本章未完,请翻下一页继续阅读.........

《从小镇做题家到首席科学家》 最新章节第248章 《周易的数学原理》,网址:https://www.sanjiange.com/book/293/293331/252_3.html